Chemical Reactivity of Naphthalenecarboxylate-Protected Ruthenium Nanoparticles: Intraparticle Charge Delocalization Derived from Interfacial Decarboxylation
نویسندگان
چکیده
Ruthenium nanoparticles were prepared by thermolytic reduction of RuCl3 in 1,2-propanediol containing sodium 2-naphthalenecarboxylate. Transmission electron microscopic measurements showed that the average diameter of the resulting 2naphthalenecarboxylate-protected ruthenium nanoparticles (RuCOONA) was 1.30 ± 0.27 nm. Interestingly, hydrothermal treatment of the nanoparticles at controlled temperatures led to decarboxylation at the metal−ligand interface, and the naphthalenyl moieties became directly bonded to the metal cores, which was confirmed by infrared and X-ray photoelectron spectroscopic measurements. In comparison with the as-produced RuCOONA nanoparticles, the decarboxylated nanoparticles (RuNA) exhibited markedly different optical and electronic properties, as manifested by an apparent red shift of the photoluminescence profiles, which was ascribed to electronic coupling between the particle-bound naphthalene groups. Electrochemical measurements exhibited consistent results where a negative shift was observed of the formal potential of the particle-bound naphthalene moieties. This was attributed to intraparticle charge delocalization that led to extended spilling of nanoparticle core electrons to the naphthalene moieties.
منابع مشابه
Intraparticle charge delocalization of carbene-functionalized ruthenium nanoparticles manipulated by selective ion binding.
Olefin metathesis reactions of carbene-stabilized ruthenium nanoparticles were exploited for the incorporation of multiple functional moieties onto the nanoparticle surface. When the nanoparticles were cofunctionalized with 4-vinylbenzo-18-crown-6 and 1-vinylpyrene, the resulting particles exhibited fluorescence characteristics that were consistent with dimeric pyrene with a conjugated chemical...
متن کاملNitrene-functionalized ruthenium nanoparticles†
Ruthenium nanoparticles protected by ruthenium–nitrene p bonds were prepared by refluxing ‘‘bare’’ ruthenium colloids (2.12 0.72 nm in diameter) and 4-dodecylbenezenesulfonyl azide in secbutylbenzene. Thermogravimetric analysis (TGA) of the resulting nanoparticles showed that on average there were about 84.1 ligands on the nanoparticle surface. XPS studies showed a 1 : 1 atomic ratio between ni...
متن کاملInterfacial reactivity of ruthenium nanoparticles protected by ferrocenecarboxylates.
Stable ruthenium nanoparticles protected by ferrocenecarboxylates (RuFCA) were synthesized by thermolytic reduction of RuCl3 in 1,2-propanediol. The resulting particles exhibited an average core diameter of 1.22 ± 0.23 nm, as determined by TEM measurements. FTIR and (1)H NMR spectroscopic measurements showed that the ligands were bound onto the nanoparticle surface via Ru-O bonds in a bidentate...
متن کاملAlkyne-Protected Ruthenium Nanoparticles†
Stable ruthenium nanoparticles protected by 1-octynyl fragments were synthesized by a wet chemical method. Transmission electron microscopic measurements showed that the resulting particles exhibited an average core diameter of 2.55 ( 0.15 nm with well-defined Ru crystalline lattice fringes. Because of the formation of RusCt bonds, the CtC vibrational stretch was found in FTIR measurements to r...
متن کاملAlkyne-stabilized ruthenium nanoparticles: manipulation of intraparticle charge delocalization by nanoparticle charge States.
Monolayer-protected transition metal nanoparticles are a unique family of functional nanomaterials in which the properties of the materials can be readily manipulated not only by the chemical nature of the metal cores and the organic protecting ligands, but also the metal–ligand interfacial bonding interactions. The latter is largely motivated by recent progress in nanoparticle passivation by m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015